AAON Airflow Signal Processor

Field Startup Guide

Engineered for accuracy, applicability, durability and simplicity in HVAC air systems
TABLE OF CONTENTS

TABLE OF CONTENTS

1. **INTRODUCTION** ... 3

1.1. **BASIC OPERATION** .. 6

1.2. **SPECIFICATIONS** .. 6

1.2.1. Power Supply ... 6

1.2.2. Power Consumption ... 6

1.2.3. Accuracy ... 6

1.2.4. Temperature Input ... 6

1.2.5. Process Output Options ... 6

1.2.6. High/Low Alarm Relay Outputs .. 6

1.3. **SAFETY** ... 7

1.3.1. Electrical Connections ... 7

1.3.2. Static Electricity .. 7

2. **PRODUCT DIMENSIONS** .. 8

3. **ELECTRICAL & PNEUMATIC CONNECTIONS** ... 9

4. **ACTIVE DISPLAYS & KEY FUNCTIONS** ... 11

4.1. **POWER-UP INITIATION DISPLAY** .. 11

4.2. **PROCESS DISPLAY DESCRIPTIONS** ... 11

4.3. **KEY FUNCTIONS** ... 12

5. **FIELD STARTUP** ... 13

5.1. **TECH CONFIGURATION MENU** .. 13

5.1.1. MAC Address (BACnet Communication Option) ... 14

5.1.2. Instance Number (BACnet Communication Option) ... 14

5.1.3. Modbus ID (Modbus Communication Option) ... 14

5.1.4. Baud Rate (Modbus and BACnet Communication Options) 15

5.2. **FIELD SETUP MENU** .. 15

5.2.1. High/Low Alarm Option ... 15

5.2.2. Flow Correction ... 17

5.2.3. Factory Defaults ... 18

6. **AAON FACTORY SETTINGS** .. 19

6.1. **TECH CONFIGURATION MENU** .. 19

6.1.1. Area Factor .. 20

6.1.2. Altitude .. 21

6.1.3. Modbus ID (Modbus Communication Option) ... 22

6.1.4. Baud Rate (Modbus and BACnet Communication Options) 23

6.2. **FIELD SETUP MENU** .. 23

6.2.1. Operating Range .. 24

6.2.2. Engineering Units ... 24

6.2.3. Temperature Compensation ... 25

6.3. **INPUT/OUTPUT SET-UP** .. 27

6.3.1. Process Output .. 27

6.3.2. Temperature Input ... 27
INDEX OF FIGURES

Figure 1 - Electrical Connections ... 9
Figure 2 - Electrical Connection with Wattmaster Controls................................. 10
Figure 3 - Pneumatic Connections.. 10
1. INTRODUCTION

This guide is intended for field startup of the AAON Airflow Signal Processor. The full AAON Outdoor Airflow Measurement System Operation and Maintenance Manual (O&M) can be downloaded from the AAON website at www.AAON.com.

1.1. BASIC OPERATION

The AAON Airflow Signal Processor receives a differential pressure signal from the AAON Airflow Station. This signal is scaled and linearized before being displayed and transmitted out as a 4-20mA, 0-5VDC, or 0-10VDC signal.

The AutoZero feature corrects any zero offset caused by large ambient temperature changes. The Temperature Compensation feature compensates the flow signal for density changes caused by variations in the air temperature. The AAON Temperature Transmitter provides a temperature input signal to the AAON Airflow Signal Processor for air density calculations.

1.2. SPECIFICATIONS

1.2.1. Power Supply

20 to 28 VAC/DC

1.2.2. Power Consumption

250mA at 24VAC
175mA at 24VDC

1.2.3. Accuracy

±0.25% full scale

1.2.4. Temperature Input

4-20mA

1.2.5. Process Output Options

0-5VDC
0-10VDC
4-20mA (700Ω maximum load)

1.2.6. High/Low Alarm Relay Outputs

Two single (1 form C) dry contacts rated for:
5 amps at 30VAC/DC
10 amps at 120VAC
1.3. **SAFETY**

1.3.1. **Electrical Connections**
Before any electrical connections are made, ensure the **POWER SWITCH** is in the **OFF** position.

1.3.2. **Static Electricity**
The circuit board contains components which are susceptible to damage caused by static electrical discharge. Should it be necessary to remove the circuit board from the enclosure, appropriate precautions must first be taken to ensure that the operator and the circuit board are at the same electrical potential.
2. PRODUCT DIMENSIONS

Air Flow
SIGNAL PROCESSOR

75°F
100,000
ACFM

TOTAL CONNECTION
STATIC CONNECTION

J1 J2

5.785" 5.25"
3.50" 4.62"
2.265"
3. ELECTRICAL & PNEUMATIC CONNECTIONS

All electrical and pneumatic connections to the AAON Airflow Signal Processor have been made at the factory as shown in Figures 1 through 3 below, with the exception of the electrical connection for network communication options other than with WattMaster Controls, if applicable. The following procedure outlines the steps for installing the interface wiring for network communication and for turning ON the AAON Airflow Signal Processor. Skip Step 3 if network communication is not required or if WattMaster Controls are provided.

Caution - All electrical connections must be made with the AAON Airflow Signal Processor Power Switch in the OFF position.

Step 1. Remove the corner mounting screws on the AAON Airflow Signal Processor cover by turning each screw counter clockwise.

Step 2. Remove the cover.

Step 3. If network communication is required, verify that the Power Switch (S3) is in the OFF position and install the interface wiring for Pins 9 and 10 as shown in Figure 1. The three electrical connectors (J1, J2, and optional J3) have removable terminal blocks for ease of installing the interface wiring.

Step 4. Turn the Power Switch (S3) to the ON position; see Section 4.1 and 4.2 for display descriptions.

Step 5. Configure the required parameters as outlined in Section 5; see Section 4.3 for a description of the Key locations and functions.

Step 6. Replace the cover by turning each corner cover mounting screw clockwise.

Figure 1 - Electrical Connections
Figure 2 - Electrical Connection with Wattmaster Controls

Figure 3 - Pneumatic Connections
4. ACTIVE DISPLAYS & KEY FUNCTIONS

4.1. POWER-UP INITIATION DISPLAY
Upon initial power-up, Software Revision information will be displayed on the graphic display for approximately 5 seconds.

```
EQ-1
Software Rev. XX.XXX
Modbus Rev. XX.XXX
```

4.2. PROCESS DISPLAY DESCRIPTIONS
After power-up initialization, the following information will appear on the graphic display depending upon the options purchased.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Process value</td>
</tr>
<tr>
<td>2</td>
<td>Air Flow temperature units in degree F or C</td>
</tr>
<tr>
<td>3</td>
<td>Flashing Asterisk indicates the CPU is functioning</td>
</tr>
<tr>
<td>4</td>
<td>Engineering units</td>
</tr>
<tr>
<td>5</td>
<td>Displayed during an AutoZero cycle</td>
</tr>
<tr>
<td>6</td>
<td>Indicating High Alarm Value has been exceeded (High/Low Alarm Option)</td>
</tr>
<tr>
<td>7</td>
<td>Indicating Low Alarm Value has been exceeded (High/Low Alarm Option)</td>
</tr>
</tbody>
</table>
4.3. **KEY FUNCTIONS**

The following figure and description identify the function of each Key.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enter Key - Allows a user to enter into the Field Menu, enter into a selected menu item, or store into memory changes made to the program.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Up Key - Allows the user to scroll up in the menu list to a selected item or increase digits when making value changes.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Right Key - When making changes to user values the Right Key allows the user to scroll to the correct digit for changes.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Down Key - Allows the user to scroll down in the menu list to a selected item or decrease digits when making value changes.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left Key - When making changes to user values the Left Key allows the user to scroll to the correct digit for changes.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Escape Key - The Escape Key allows the user to back out of the menu to the Active Display. If a user starts to make a change and decides to cancel the change, the Escape Key will allow the user to return to the Active Display without making the change.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Power Switch – Allows a user to turn power off to the AAON Signal Processor during field wiring or modifications to the device.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lon Switch – Allows a user to send a unique Neuron device ID when connecting to a LonWorks communication network.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RP1 – Allows a user to adjust the display contrast.</td>
<td></td>
</tr>
</tbody>
</table>
5. FIELD STARTUP

The AAON Airflow Signal Processor has been configured by the factory for the specific application. Therefore, the only parameters that need to be configured in the field are the network communication settings, with the exception of Modbus® Slave communication with WattMaster Controls which has been configured at the factory, and the High/Low Alarm Option if ordered. Communication settings will be configured under the Tech Configuration Menu (see Section 5.1). The High/Low Alarm Option will be configured under the Field Setup Menu (see Section 5.2).

During field startup, if the displayed value on the AAON Airflow Signal Processor does not match the reading from the Balancer, a Flow Correction (K-Factor) can also be entered under the Field Setup Menu (see Section 5.2).

If required, the AAON Factory Settings can be checked or reconfigured following procedures outlined in Section 6. If parameters are reconfigured incorrectly, all device settings can be restored to the original AAON Factory Settings (see Section 5.2.3). This guide is intended for field startup only of the AAON Airflow Signal Processor. The full AAON Outdoor Airflow Measurement System O&M can be downloaded from AAON’s website at www.AAON.com.

5.1. TECH CONFIGURATION MENU

If a network communication option is ordered the associated settings will need to be configured, with the exception of Modbus® Slave communication with WattMaster Controls which has been configured at the factory. To set the parameters refer to the following procedure, below subsections, and Section 4.3 for Key functions.

Step 1. Enter the Tech Configuration Menu by pressing and holding the Up/Down Keys simultaneously for 5 seconds.

Step 2. Using the Up/Down/Left/Right Keys, enter password number 1000 and press the Enter Key.

Step 3. Once in the Tech Configuration Menu, use the Up/Down Keys to highlight the required parameter for configuration as shown in Sections 5.1.1 through 5.1.4. Press the Enter Key once to access the highlighted parameter Menu.

Step 4. Once in the parameter menu, the parameter can be changed using the Up/Down/Left/Right Keys. After the parameter has been changed, press the Enter Key once. Then Press the ESC Key once to return to the Tech Configuration Menu.

Step 5. After all of the required parameters have been configured, exit the Tech Configuration Menu by pressing the ESC Key. The Process Display (see Section 4.2) will then be displayed.
5.1.1. MAC Address (BACnet Communication Option)
When the BACnet Communication option is ordered, the MAC Address Menu allows the user to set a unique device address when connecting to a BACnet network. The default is 002. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

<table>
<thead>
<tr>
<th>Tech. Config.</th>
<th>Password: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4PT Flow Corr</td>
<td>MAC Address</td>
</tr>
<tr>
<td>Instance Number</td>
<td>Modbus ID</td>
</tr>
<tr>
<td></td>
<td>MAC Address</td>
</tr>
<tr>
<td></td>
<td>(Range = 02 to 254)</td>
</tr>
<tr>
<td></td>
<td>(002)</td>
</tr>
</tbody>
</table>

5.1.2. Instance Number (BACnet Communication Option)
When the BACnet Communication option is ordered, the Instance Number Menu allows the user to set a unique device address when connecting to a BACnet network. The default is 1002. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

<table>
<thead>
<tr>
<th>Tech. Config.</th>
<th>Password: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4PT Flow Corr</td>
<td>Instance Number</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Modbus ID</td>
</tr>
<tr>
<td></td>
<td>Instance Number</td>
</tr>
<tr>
<td></td>
<td>Modbus ID</td>
</tr>
<tr>
<td></td>
<td>Instance Number</td>
</tr>
<tr>
<td></td>
<td>(Range = 02 to 254)</td>
</tr>
<tr>
<td></td>
<td>(01002)</td>
</tr>
</tbody>
</table>

5.1.3. Modbus ID (Modbus Communication Option)
When the Modbus Communication option is ordered, the Modbus ID Menu allows the user to set a unique device address when connecting to a Modbus network. The default is 002. For communication with WattMaster Controls the Modbus ID has been set by the factory to 009 for outside airflow applications. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

<table>
<thead>
<tr>
<th>Tech. Config.</th>
<th>Password: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4PT Flow Corr</td>
<td>Modbus ID</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Modbus ID</td>
</tr>
<tr>
<td>Instance Number</td>
<td>Modbus ID</td>
</tr>
<tr>
<td></td>
<td>Modbus ID</td>
</tr>
<tr>
<td></td>
<td>(Range = 01 to 254)</td>
</tr>
<tr>
<td></td>
<td>(002)</td>
</tr>
</tbody>
</table>
5.1.4. **Baud Rate (Modbus and BACnet Communication Options)**

The Baud Rate Menu allows the user to set a unique network baud rate. Modbus communications supports 9.6, 19.2, 38.4, 57.6 and 115.2 Kbps baud rate. The current BACnet protocol supports 9.6, 19.2, 38.4 and 76.8 Kbps baud rate. The default is 38.4 Kbps. For communication with WattMaster Controls, the Baud Rate has been set by the factory to 9.6 Kbps. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

5.2. **FIELD SETUP MENU**

The High/Low Alarm Option, if ordered, and Flow Correction (K-Factor) will be configured under the Field Setup Menu. To set the parameters refer to the following procedure, below subsections, and Section 4.3 for Key functions.

- **Step 1.** Enter the Field Setup Menu by depressing and holding the Enter Key for 5 seconds.
- **Step 2.** Once in the Field Setup Menu use the Up/Down Keys to highlight the required parameter for configuration as shown in Sections 5.2.1 through 5.2.3. Press the Enter Key once to access the highlighted parameter Menu.
- **Step 3.** Once in the parameter menu, the parameter can be changed using Up/Down/Left/Right Keys. After the parameter has been changed, press the Enter Key once. Then Press the ESC Key once to return to the Field Setup Menu.
- **Step 4.** After all of the required parameters have been configured, exit the Field Setup Menu by pressing the ESC Key. The Process Display (see Section 4.2) will then be displayed.

5.2.1. **High/Low Alarm Option**

The following menus for configuration of High/Low Alarms are only available if the High/Low Alarm option is purchased.
5.2.1.1. **Alarm Status**
The Alarm Status allows the user to independently turn each alarm ON or OFF.

![Flowchart](image)

5.2.1.2. **Alarm Values**
The Alarm Value Menu allows the user to enter the Low or the High flow alarm value. Alarm values will be displayed in the same engineering units selected in the Engineering Units Menu (see Section 6.2.2).

- **High Alarm Function**: The High Alarm activates if the flow exceeds the High Alarm value and resets when the flow drops below the High Alarm Value.
- **Low Alarm Function**: The Low Alarm activates if the flow drops below the Low Alarm Value and resets when the flow exceeds the Low Alarm Value.

![Flowchart](image)

5.2.1.3. **Alarm Delay**
The Alarm Delay Menu allows the user to enter an alarm delay of 0 to 999 seconds before an alarm will be activated. The alarm will be reset without a delay.

![Flowchart](image)
5.2.2. Flow Correction

The Flow Correction Menu was incorporated into the AAON Airflow Signal Processor to give the user an easy way to make corrections to the display and output without changing the Operating Range Value entered by the factory or user. The Flow Correction Menu would be used to correct for a constant error from zero to the entered Operating Range Value.

5.2.2.1. Flow Correction (K-Factor)

If the user knows the % change required to match the balancers reading, select the K-Factor Menu and enter this value for the K-Factor. The minimum and maximum allowable K-Factor Value is displayed in the K-Factor Menu.

5.2.2.2. Flow Correction (K-Factor Calculator)

If the new K-factor Value needs to be calculated, select the K-Factor Calc. Menu. Enter the Displayed Value on the AAON Airflow Signal Processor and actual Measured Value, press Enter and the % change will be calculated and stored as the new K-Factor Value.

-FLOW CORRECTION EXAMPLE-

The balancer is consistently measuring a value of 9,500 CFM, which is 500 CFM less than the 10,000 CFM value on the AAON Airflow Signal Processor display. The user would then perform the following math function: Measured Value / Displayed Value = K-Factor so 9,500 CFM / 10,000 CFM = 0.950. The user would enter 0.950 for the K-Factor Flow Correction. If the K-Factor Calculator is used, the K-Factor Flow Correction would automatically update the K Factor.
5.2.3. **Factory Defaults**

If parameter configuration changes have been made incorrectly to the AAON Airflow Signal Processor, all device settings can be restored to the original AAON factory settings by selecting YES and pressing Enter in both the Set To Factory Defaults Menu and the Verify Set To Factory Defaults Menu (see Factory Defaults table below for a list of Saved Settings).

![Diagram](Diagram.png)

<table>
<thead>
<tr>
<th>FACTORY DEFAULTS</th>
<th>ITEM</th>
<th>SAVED SETTING</th>
<th>ITEM</th>
<th>SAVED SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>All Factory Calibration Points (12)</td>
<td>14</td>
<td>MAC Address</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Area Factor</td>
<td>15</td>
<td>Instance Number</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Operating Range</td>
<td>16</td>
<td>Engineering Units</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4 Pt Flow Correction</td>
<td>17</td>
<td>Display Filter Values</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Altitude</td>
<td>18</td>
<td>Output Filter</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>K-Factor</td>
<td>19</td>
<td>DP Display Format</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Lockdown & Delay Values</td>
<td>20</td>
<td>Output Calibration</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Flow Correction</td>
<td>21</td>
<td>AutoZero Status</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Flow Coefficient</td>
<td>22</td>
<td>AutoZero Interval</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Min. & Max. Temp Range Values</td>
<td>23</td>
<td>Temp. Units</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Alarm Status</td>
<td>24</td>
<td>Temp. Input</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Alarm Values</td>
<td>25</td>
<td>Temp. Fixed Value</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Alarm Delay</td>
<td>26</td>
<td>Baud Rate</td>
</tr>
</tbody>
</table>

18
6. AAON FACTORY SETTINGS

To convert the differential pressure signal from the AAON Airflow Station to a flow value, the Area Factor associated with the AAON Airflow Station has been entered by the factory; see Figure 3 in Section 3 for proper pneumatic connection of the AAON Airflow Station. The AAON Airflow Signal Processor Operating Range has also been configured for the specific application and will display the measured flow rate in Engineering Units of actual cubic feet per minute (ACFM). For air density compensation, the AAON Airflow Signal Processor receives a temperature input from the AAON Temperature Transmitter and the job specific site altitude has been entered; see Figure 1 in Section 3 for proper electrical connection of the AAON Temperature Transmitter and Section 6.3.2 for temperature input signal configuration. If the Modbus® Slave communication option has been ordered for communication with WattMaster Controls, the associated settings have been configured at the factory. The Process Output of the AAON Airflow Signal Processor has been set to 0-10 VDC. The Process Output is also field selectable (see Section 6.3.1).

Area Factor, Altitude, and Modbus® Slave communication settings are configured under the Tech Configuration Menu (see Section 6.1). Operating Range, Engineering Units, and Temperature Compensation, are configured under the Field Setup Menu (see Section 6.2).

6.1. TECH CONFIGURATION MENU

The Area Factor, Altitude, and Modbus® Slave communication settings can be checked or reconfigured under the Tech Configuration Menu. To set the parameters refer to the following procedure, below subsections, and Section 4.3 for Key functions.

Step 1. Enter the Tech Configuration Menu by pressing and holding the Up/Down Keys simultaneously for 5 seconds.

Step 2. Using the Up/Down/Left/Right Keys, enter password number 1000 and press the Enter Key.

Step 3. Once in the Tech Configuration Menu, use the Up/Down Keys to highlight the required parameter for configuration as shown in Sections 6.1.1 through 6.1.4. Press the Enter Key once to access the highlighted parameter Menu.

Step 4. Once in the parameter menu, the parameter can be changed using the Up/Down/Left/Right Keys. After the parameter has been changed, press the Enter Key once. Then Press the ESC Key once to return to the Tech Configuration Menu.

Step 5. After all of the required parameters have been configured, exit the Tech Configuration Menu by pressing the ESC Key. The Process Display (see Section 4.2) will then be displayed.
6.1.1. Area Factor

To convert the differential pressure signal from the AAON Airflow Station to a flow value, the Area Factor associated with the AAON Airflow Station has been preprogramed by the factory. If the Area Factor needs to be checked or reconfigured, the correct Area Factor for the AAON Airflow Station can be found on the AAON Airflow Station product label installed in the air handling unit.

<table>
<thead>
<tr>
<th>Tech. Config.</th>
<th>Password: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Factor</td>
<td></td>
</tr>
<tr>
<td>Zero Calibration</td>
<td>(FT²)</td>
</tr>
<tr>
<td>Span Calibration</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>(001.000)</td>
</tr>
</tbody>
</table>

If the Area Factor is reconfigured and the new Area Factor causes the existing Operating Range Value to be outside the new calculated Minimum or Maximum Full Scale Value, the below Warning Message will appear and the Operating Range will be reset to the new Maximum Full Scale Value by pressing Enter. The display will automatically jump to the Operating Range Menu allowing the user to enter a new Operating Range Value. This can be accomplished by performing the steps under Section 6.2.1. See Area Factor Example below.

<table>
<thead>
<tr>
<th>Warning Message:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op Range Outside Allowable Value</td>
</tr>
<tr>
<td>Reset to MAX F.S. (Press Enter)</td>
</tr>
</tbody>
</table>
6.1.2. Altitude

The Altitude Menu allows the user to enter the specific altitude for the job for the density calculations; the job specific site Altitude has been preprogramed by the factory.

If the Altitude is changed from the factory setting and the new Altitude causes the existing Operating Range Value to be outside the new calculated Minimum or Maximum Full Scale Value, the below Warning Message will appear and the Operating Range will be reset to the new Maximum Full Scale Value by pressing Enter. The display will automatically jump to the Operating Range Menu allowing the user to enter a new Operating Range Value. This can be accomplished by performing the steps under Section 6.2.1. See Altitude Example below.
-Altitude Example-

Entering a new Altitude and pressing the Enter button will calculate new Min & Max Op Range values.

Op Range value within New Min/Max values
Altitude Accepted (0100)Ft

Op Range value exceeds New Min/Max values
Warning Message

Operating Range (ACFM)
(6,000 - 12,000)
(12,000)

Pressing the Enter button will reset the current Op Range value to the new calculated Max. F.S value which will represent 100% of the process output value.

The Op Range value can be changed and will represent 100% of the process output signal (5vdc, 10vdc or 20mA).

6.1.3. Modbus ID (Modbus Communication Option)
When the Modbus Communication option is ordered, the Modbus ID Menu allows the user to set a unique device address when connecting to a Modbus network. The default is 002. For communication with WattMaster Controls the Modbus ID has been set by the factory to 009 for outside airflow applications. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

<table>
<thead>
<tr>
<th>Tech. Config.</th>
<th>Password: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4PT Flow Corr</td>
<td>Modbus ID</td>
</tr>
<tr>
<td>MAC Address</td>
<td>(Range = 01 to 254)</td>
</tr>
<tr>
<td>Instance Number</td>
<td>(002)</td>
</tr>
</tbody>
</table>

Modbus ID (Range = 002)
6.1.4. Baud Rate (Modbus and BACnet Communication Options)
The Baud Rate Menu allows the user to set a unique network baud rate. Modbus communications supports 9.6, 19.2, 38.4, 57.6 and 115.2 Kbps baud rate. The current BACnet protocol supports 9.6, 19.2, 38.4 and 76.8 Kbps baud rate. The default is 38.4 Kbps. For communication with WattMaster Controls, the Baud Rate has been set by the factory to 9.6 Kbps. For additional information refer to the AAON Outdoor Airflow Measurement System O&M.

6.2. FIELD SETUP MENU

The Operating Range, Engineering Units, and Temperature Compensation can be checked or reconfigured under the Field Setup Menu. To set the parameters refer to the following procedure, below subsections, and the figure in Section 4.3 for Key functions.

- **Step 1.** Enter the Field Setup Menu by depressing and holding the Enter Key for 5 seconds.
- **Step 2.** Once in the Field Setup Menu use the Up/Down Keys to highlight the required parameter for configuration as shown in Sections 6.2.1 through 6.2.3. Press the Enter Key once to access the highlighted parameter Menu.
- **Step 3.** Once in the parameter menu, the parameter can be changed using Up/Down/Left/Right Keys. After the parameter has been changed, press the Enter Key once. Then Press the ESC Key once to return to the Field Setup Menu.
- **Step 4.** After all of the required parameters have been configured, exit the Field Setup Menu by pressing the ESC Key. The Process Display (see Section 4.2) will then be displayed.
6.2.1. Operating Range
The Operating Range allows the user to enter a value which will represent 100% of the process output signal (5VDC, 10VDC, or 20mA). The Operating Range Value has been set by the factory to equal 110% of the design supply flow rate, unless this value is less than the Minimum Full Scale Value allowed for the AAON Airflow Signal Processor. The menu will display the Minimum Full Scale Value allowed which is then entered as the Operating Range.

Field Setup Menu

Operating Range
Zero Calibration
Engineering Units
Lockdown

⇒ Operating Range
(ACFM)
(6,000-12,000)
(010,000)

6.2.2. Engineering Units
A list of engineering units are available for the user to select from for display purposes to meet customer requirements. Changing the engineering units will affect the process display and the alarm value menus. The default setting is ACFM.

Field Setup Menu

Operating Range
Zero Calibration
Engineering Units
Lockdown

⇒ Eng. Units
(ACFM)

<table>
<thead>
<tr>
<th>Standard Flow Units</th>
<th>Actual Flow Units</th>
<th>Standard Velocity Units</th>
<th>Actual Velocity Units</th>
<th>Pressure Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCFM</td>
<td>ACFM</td>
<td>SFPM</td>
<td>AFPM</td>
<td>Inch w.c.</td>
</tr>
<tr>
<td>SCFH</td>
<td>L/S</td>
<td>Sm/s</td>
<td>Am/s</td>
<td>Pa</td>
</tr>
<tr>
<td>SL/S</td>
<td>Am³/S</td>
<td>%</td>
<td>%</td>
<td>KPa</td>
</tr>
<tr>
<td>Sm³/S</td>
<td>Am³/M</td>
<td></td>
<td>mm w.c.</td>
<td>%</td>
</tr>
<tr>
<td>Sm³/M</td>
<td>Am³/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm³/HR</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2.3. Temperature Compensation

Temperature Compensation corrects the flow signal for density changes caused by variations in the air temperature. An input signal from the AAON Temperature Transmitter is required; see Figure 1 in Section 3 for proper temperature transmitter connection and Section 6.3.2 for temperature input signal configuration.

6.2.3.1. Temperature Units

The Temperature Units Menu allows the user to select the appropriate temperature units for the job. The default setting is °F.

6.2.3.2. Temperature Values

The Temperature Values Menu allows the factory or user to set the minimum and maximum temperature range values that represent the input signal from the external temperature transmitter or the building automation system. Since the AAON Temperature Transmitter has been supplied the minimum and maximum temperature range values of -30°F to 130°F have been preprogramed.

If the temperature values are changed from the factory settings and the new temperature values cause the existing Operating Range Value to be outside the new calculated Minimum or Maximum Full Scale Value, the below Warning Message will appear and the Operating Range will be reset to the new Maximum Full Scale Value by pressing Enter. The display will automatically jump to the Operating Range Menu allowing the user to enter a new Operating Range Value. This can be accomplished by performing the steps under Section 6.2.1. See Temperature Range Example below.

Warning Message:

```
Op Range Outside Allowable Value
Reset to MAX F.S. (Press Enter)
```
6.2.3.3. Temperature Input

The Temperature Input Menu allows the user to select between three temperature input options (Fixed, Variable, and Network) for the flow calculations. Since the AAON Temperature Transmitter has been supplied, Variable has been selected. If Fixed is selected, the default temperature value entered in the Fixed Value Menu (see Section 6.1.2.4) is used. If Net is selected, the temperature input signal is obtained through network communications. The Net option is only available if one of the communication options is ordered. The temperature value is only displayed on the LCD screen, if the Temperature Input is set to Variable or Network.
6.2.3.4. **Fixed Value**

The Fixed Value Menu allows the user to enter a temperature value for the flow calculations. This value will not be displayed on the LCD screen.

Field Setup

Menu

流向 correction

AutoZero

Temp Comp.

Display Filter

⇒

Temperature Units

Temperature Values

Temperature Input

Fixed Value

⇒

Fixed Value

(°F)

(068)

6.3. **INPUT/OUTPUT SET-UP**

If input or output configuration changes are required refer to the tables in the sections below and the Figure 1 in Section 3.

6.3.1. **Process Output**

If controls are provided, the process output has been set by the factory for input to the specific controller; otherwise the default is 0-10VDC. To change the output configuration, set the S2 & S4 switches as follows:

<table>
<thead>
<tr>
<th>Process Output</th>
<th>Range</th>
<th>S2</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>4-20mA</td>
<td>NA</td>
<td>mA</td>
</tr>
<tr>
<td>Voltage</td>
<td>0-10VDC</td>
<td>10V</td>
<td>V</td>
</tr>
<tr>
<td>Voltage</td>
<td>0-5VDC</td>
<td>5V</td>
<td>V</td>
</tr>
</tbody>
</table>

6.3.2. **Temperature Input**

Since the AAON Temperature Transmitter has been provided, the temperature input has been set by the factory for 4-20mA. To change the input configuration, set the S1 switch as follows:

<table>
<thead>
<tr>
<th>Temperature Input</th>
<th>S1 Switch Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20mA</td>
<td>mA</td>
</tr>
<tr>
<td>0-10VDC</td>
<td>V</td>
</tr>
</tbody>
</table>
Note: Before calling Technical Support, please have the model and serial number of the unit available.

Parts: For replacement parts please contact your local AAON Representative.

It is the intent of AAON to provide accurate and current product information. However, in the interest of product improvement, AAON reserves the right to change pricing, specifications, and/or design of its product without notice, obligation, or liability.